
Simulink® Code Inspector™

User’s Guide

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Code Inspector™ User’s Guide
© COPYRIGHT 2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2011 Online only New for Version 1.0 (Release 2011b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Why Use This Product? . 1-2

Code Inspector Capabilities . 1-4
About Code Inspector Capabilities . 1-4
Model Interface . 1-5
Block Behavior . 1-6
Block Connectivity and Execution Order 1-7
Data and File Packaging . 1-8
Local Variables . 1-8

Typical Workflows . 1-9
Workflow Summary . 1-9
Model Development Workflows . 1-9
Inspection Workflow . 1-10

Quick-Start Example . 1-12

Model Compatibility Checking

2
About Model Compatibility Checking 2-2

Checking Model Compatibility from the Model
Window . 2-5

Checking Model Compatibility Using the
Command-Line Interface . 2-9

Correcting or Working Around Unsupported Blocks . . 2-10

iii

Correcting or Working Around Global Data Store
Usage . 2-11

Code Inspection

3
About Code Inspection . 3-2

Inspecting Code from the Model Window 3-4

Inspecting Code Using the Command-Line Interface . . 3-9

DO-178B Objectives Compliance

4
Model-Based Design Workflow in DO-178B 4-2

Compatible DO-178B Objectives . 4-5

iv Contents

1

Getting Started

• “Why Use This Product?” on page 1-2

• “Code Inspector Capabilities ” on page 1-4

• “Typical Workflows” on page 1-9

• “Quick-Start Example” on page 1-12

1 Getting Started

Why Use This Product?
Simulink® Code Inspector™ automatically compares generated code with
its source model to satisfy code-review objectives in DO-178B and other
high-integrity standards. The Code Inspector systematically examines
blocks, parameters, and settings in a model to determine whether they
are structurally equivalent to operations, operators, and data in the
generated code. Simulink Code Inspector provides detailed model-to-code and
code-to-model traceability analysis. It generates structural equivalence and
traceability reports that you can submit to certification authorities to satisfy
DO-178 software coding verification objectives.

Key features of Simulink Code Inspector include:

• Structural equivalence analysis and reports

• Bidirectional traceability analysis and reports

• Compatibility checker to restrict model, block, and coder usage to
operations typically used in high-integrity applications

• Tool independence from Simulink code generators

Use Simulink Code Inspector tooling to:

• Prepare for code inspection during model development.

• Run inspections on code generated from models and review reported results.

• Automatically generate code verification reports to support software
certification.

While developing a model intended for generating code, you can incrementally
and iteratively check the model for compatibility with Code Inspector rules.
This process significantly reduces the amount of time to achieve successful
inspection results.

For company and organization Designated Engineering Representatives
(DERs) and Federal Aviation Administration (FAA) Auditors who must certify
software under DO178-B, the Code Inspector significantly reduces the time
and cost associated with verifying code against requirements. Instead of
completing manual line-by-line code reviews with a project checklist, which is

1-2

Why Use This Product?

time intensive and error prone, you can run the Code Inspector and review
a detailed inspection report.

1-3

1 Getting Started

Code Inspector Capabilities

In this section...

“About Code Inspector Capabilities” on page 1-4

“Model Interface” on page 1-5

“Block Behavior” on page 1-6

“Block Connectivity and Execution Order” on page 1-7

“Data and File Packaging” on page 1-8

“Local Variables” on page 1-8

About Code Inspector Capabilities
Simulink Code Inspector automatically compares generated code with
its source model to satisfy code-review objectives in DO-178B and other
high-integrity standards. The Code Inspector systematically examines
blocks, parameters, and settings in a model to determine whether they are
structurally equivalent to operations, operators, and data in the generated
code. The tool captures results in structural equivalence and traceability
reports.

Sections in this topic provide details about what the Code Inspector examines
relative to:

• Model interface

• Block behavior

• Block connectivity and execution order

• Data and file packaging

• Local variables

Each section provides a table that lists what the Code Inspector examines.
For each entry the table provides:

• An identifier, which you can use, for example, to refer to an entry from a
too qualification document.

1-4

Code Inspector Capabilities

• An example of a condition that the Code Inspector can discover.

• The level of support provided — full or partial; footnotes give more detail
for checks providing partial support.

For detailed descriptions of Code Inspector constraints and corresponding
model compatibility checks, see “Model Configuration Constraints Reference”,
“Block Constraints Reference”, and “Simulink Code Inspector Checks”.

Note Before you use Simulink Code Inspector, compare the Code Inspector
capabilities with your code review checklist. If you find code review checks for
which no corresponding Code Inspector capabilities exist, you must separately
verify those checklist items.

Model Interface

ID Check Whether... Example of Detectable
Condition

Level of
Support

MDLINTFUNCGEN Model interface functions
were generated

Model step function is
missing.

Full

MDLINTDATAGEN Model interface data
structures were generated

Root input data structure for
a bus is missing.

Partial*

MDLINTFUNCSIG Model interface functions
have expected signatures

Model step function
argument sequence differs
from function prototype
control specification.

Partial**

MDLINTIOGEN Expected input and output
data structures were
generated

External input for
initialization function was
not initialized as expected.

Partial*

* Arrays and built-in types are supported. For structures, the name or tag is
verified, but not the structure fields.
** The data types of interface arguments are not verified in all cases.

1-5

1 Getting Started

Block Behavior

ID Check Whether... Example of Detectable
Condition

Level of
Support

BLKCOMPS Code generated for a block
includes all components of
functionality

Code for a Unit Delay block
does not include code for
updating its state variable.

Full

BLKCOMPSEXP Code generated for a block
includes only expected
instances of component
functionality

Code includes two
independent addition
operations that trace to the
same Sum block.

Full

BLKCOMPSTRACE With exception of
system logic code, code
segments trace back
to block component
functionality; system logic
code traces back to system
functionality

A segment of code exists
that does not trace back to a
block source.

Full

BLKCOMPSCONFIG Code for block component
functionality represents
the current block
configuration

A Relational Operator block
is configured for an equal
(==) operation, but it traces
to code that applies a not
equal (!=) operation.

Full

BLKCOMPSSYSFUNC Code for block component
functionality is in the
corresponding system
function

The output code for a Unit
Delay block is in the start
function of the parent
system.

Full

BKLCOMPSPROPS Property settings in the
code, such as dimension,
complexity, and data
type, are compatible with
settings for corresponding
source blocks

A Gain block with an output
data type of double traces to
code that assigns the block
output to variable of type
real32_T.

Partial***

*** The data types of root output blocks are not verified in all cases.

1-6

Code Inspector Capabilities

Block Connectivity and Execution Order

ID Check Whether... Example of Detectable
Condition

Level of
Support

BLKDATADEPEND Data dependency between
two block components is
preserved in the code

A Gain block generates a
multiplication operation with
one operand as its parameter
and another operand as a
variable not written to by the
source of the Gain block.

Full

BLKDATADEFUSE Data definition and use
dependencies in the code
reflect dependencies in the
model

A variable buffer is written
to by the operation of block A.
It is written to again by the
operation of block B before a
destination block for block A
has read the first value.

Full

BLKINPUT Sources of block input are
represented in the code in
the expected order

A Gain block uses input from
a muxed signal for input port
1 and 2 (in this order). The
multiplication code for the
Gain block uses the variable
representing the input port
to calculate the output value
for the first element of its
output buffer.

Full

BLKINDEX Selection of data in the code
uses the expected index

A Gain block is fed by a Bus
Selector that selects field
f1 from bus foobus. The
multiplication operation in
the code is on foobus.

Full

BLKEXEORDER Code execution order is
consistent with model
element execution order

Gain block A feeds a Unit
Delay block B. The update
code of Unit Delay block B
appears before the output
code of Gain block A.

Full

1-7

1 Getting Started

Data and File Packaging

ID Check Whether... Example of Detectable
Condition

Level of
Support

SIGOBJAUTO Signal objects with storage
class auto are represented
in the code as expected

Signal sig1 is specified with
the auto storage class. In the
code, sig1 is represented as
a global variable instead of
an element of the output data
structure.

Full

PARAMOBJAUTO Parameter objects with
storage class auto are
represented in the code as
expected

Parameter K is specified with
the auto storage class. In
the code, the literal value of
the parameter is represented
as a global variable instead
of its literal value or an
element of the parameter
data structure.

Full

PARAMINLINE Inlined parameter values
are represented in the code
as expected

A Gain block has its Gain
parameter set to 3.0. The
code uses the literal value
4.0 in the multiplication
operation.

Full

Local Variables

ID Check Whether... Example of Detectable
Condition

Level of
Support

LCLVARUSED All local variables are used Local variable tmp is defined
but not used

Full

LCLVARDEF Local variables are defined
before being used

Local variable tmp is used,
but is not defined

Full

1-8

Typical Workflows

Typical Workflows

In this section...

“Workflow Summary” on page 1-9

“Model Development Workflows” on page 1-9

“Inspection Workflow” on page 1-10

Workflow Summary
The workflow that you use depends on your role.

If Your Role Is... Consider...

Engineer responsible for developing
a model that requires code inspection

Model development workflows

Code reviewer Inspection workflow

Model Development Workflows

• “New Model Development Workflow” on page 1-9

• “Model Enhancement and Maintenance Workflow” on page 1-10

New Model Development Workflow
If you are developing a new application model, iterate through the following
steps, incrementally combining application model components that are
compatible with the Code Inspector until your application model is complete.

1 Create a model. For details on how to check compatibility while developing
models, see Chapter 2, “Model Compatibility Checking”.

2 Check whether the model is compatible with Code Inspector rules. If the
model is compatible, go to step 4.

3 Fix reported conditions that you did not expect and return to step 2.

4 Consider combining the model with one or more other compatible models.

1-9

1 Getting Started

For details on how to check compatibility while developing models, see
Chapter 2, “Model Compatibility Checking”.

Model Enhancement and Maintenance Workflow
If you are enhancing or maintaining an application model, for each model
that you modify, iterate through the following steps. For a referenced model,
iterate through the steps for each model in the relevant model hierarchy,
starting from the bottom of the hierarchy.

1 Check whether the model is compatible with Code Inspector rules. If the
model is compatible, you are done.

2 Fix reported conditions that you did not expect and return to step 1.

For details on how to check compatibility while developing models, see
Chapter 2, “Model Compatibility Checking”.

Inspection Workflow

1 Enable the Code Inspector by setting the model configuration parameter
AdvancedOptControl to -SLCI..

set_param(gcs, 'AdvancedOptControl', '-SLCI')

2 Check whether you must save the model. If you make changes and do
not save the model before initiating an inspection, the inspection does not
start. You can use the model parameter, Dirty, to determine whether you
must save a model. For example:

if strcmp(get_param(gcs, 'Dirty'), 'on')
save_system;

end

3 Check the model for compatibility with code inspection rules. See Chapter
2, “Model Compatibility Checking”.

4 Run the Code Inspector.

1-10

Typical Workflows

If You Want To... Use the...

Review the verification reports
displayed at the end of inspection
for a model

Simulink Code Inspector dialog box

Check the overall inspection
status (VERIFIED or
FAILED_TO_VERIFY)

Command line interface

Run multiple inspections in batch
mode

Command line interface

5 Review the results. If modifications are required, return to model
development and follow the workflow described in “Model Enhancement
and Maintenance Workflow” on page 1-10. If the code inspection passes or
if conditions reported are intentional and expected, continue to step 6.

6 Depending on your role, archive the report, pass the report on for further
review, include the report in a certification package, and so on.

For details on how to run a code inspection, see Chapter 3, “Code Inspection”.

1-11

1 Getting Started

Quick-Start Example
The following example shows how to use the Simulink Code Inspector dialog
box to perform key tasks in the code verification workflow. In this example,
you:

• Prepare a model hierarchy for code generation and code inspection.

• Automatically generate code for the model hierarchy.

• Verify the generated code independently of the code generation tool.

• Purposely introduce an error into the generated code and inspect for failure.

Note The demo slcidemo_intro illustrates the same code verification
workflow using MATLAB commands.

1 Set up the model in a work folder and Open the demo model
slcidemo_roll_orig using the following command:

>> slcidemo_roll_orig

Note If you try this example with a model other than slcidemo_roll, set
the model parameter AdvancedOptControl to the value '-SLCI'. This
setting constrains the code optimizations that Embedded Coder™ uses
to a subset that is compatible with code inspection. From the top model
window, issue the following command:

>> set_param(gcs, 'AdvancedOptControl', '-SLCI')

2 Save a copy of the model to a work folder, renaming it to slcidemo_roll.
Change the folder to the work folder. The top level of the model appears as
follows.

1-12

Quick-Start Example

This model represents a basic roll axis autopilot with two operating modes:
roll attitude hold and heading hold. The mode logic for these modes is
external to this model. The model architecture represents the heading hold
mode and basic roll attitude function as referenced models. The model
includes:

• Virtual subsystem RollAngleReference, which implements the basic
roll angle reference calculation. Embedded Coder code generation inlines
this calculation directly into the main function for slcidemo_roll.

• Model block HeadingMode, referencing a separate model that computes
the roll command to track the heading that you want.

• Model block BasicRollMode, referencing a separate model that computes
the roll attitude control function.

3 Prepare the model for code generation and code inspection.

a From the top model window, select Tools > Simulink Code Inspector.
The Simulink Code Inspector dialog box opens.

b Configure model compatibility checks. For this example, select Inspect
all referenced models and click Apply. This setting includes

1-13

1 Getting Started

referenced models in model compatibility checking as well as code
inspection. The dialog box should appeara as follows:

c Run the model compatibility checks by clicking Check all models. The
compatibility checker displays a progress bar.

Results appear in the command window and in an HTML report window.

• The MATLAB® Command Window displays results similar to the
following:

1-14

Quick-Start Example

• The HTML report window displays results similar to the following.

1-15

1 Getting Started

Note This HTML report is linked from the command window results.
It is saved as file summaryReport.html in the current working folder.

4 Generate code for the model. You can generate code implicitly as part
of code inspection (using the Simulink Code Inspector dialog box option
Generate code before code inspection), or perform code generation
and code inspection as separate steps. This example separates the code
generation step from the code inspection step.

a In the top model window, select Simulation > Configuration
Parameters to open the Configuration Parameters dialog box. In the
Code Generation > Report pane, select the option Launch report
automatically. (If you try this example with a model other than
slcidemo_roll, select all options in the Report pane.) Click OK and
save the model changes.

b Go to the Code Generation main pane and click Generate code. (If
the Generate code button does not appear for your model, select the
Generate code only option to enable the button.) Progress is displayed
in the MATLAB Command Window.

c Embedded Coder code generation displays results in an HTML report
window.

1-16

Quick-Start Example

5 Inspect the generated code.

a Open the Simulink Code Inspector dialog box if it is not already
open, and examine the code inspection parameter settings. The Code
placement parameter is set to Embedded Coder default, which
configures code inspection to use the default Embedded Coder folder
structure created by code generation.

b Optionally, you can change the location to which code inspection writes
the code inspection report, using the dialog box parameter Report
folder. For example, enter the path string ./report and click Apply.

1-17

1 Getting Started

c To inspect the generated code, click Inspect Code. The Code Inspector
displays a progress bar.

d The Code Inspector displays a summary in an HTML report window.

1-18

Quick-Start Example

The summary report links to detailed verification reports for the top
model and each referenced model. For example, here is the topmost
portion of the verification report for the top model, slcidemo_roll.

1-19

1 Getting Started

1-20

Quick-Start Example

The summary report and the detailed verification reports are saved as
HTML files in the Report folder location that you specified.

6 Insert an error into the generated code and inspect for failure.

To show a failed result, this example inserts an intentional error in the
generated code. The Logical Operator block inside the RollAngleReference
subsystem is changed in the generated code from an OR operation (||) to an
AND operation (&&), using the demo utility function slcidemo_modifycode.

a To highlight the block for which corresponding code is modified, issue
the following command:

>> hilite_system('slcidemo_roll/RollAngleReference/Or');

b To modify the OR to an AND, issue the following commands:

>> cfile = fullfile('.','slcidemo_roll_ert_rtw','slcidemo_roll.c');

>> slcidemo_modifycode(cfile,'<S1>/Or','||','&&')

The slcidemo_modifycode utility function displays the following output:

Modified line 93 of file .\slcidemo_roll_ert_rtw\slcidemo_roll.c.

Before: if ((U_Phi >= 6.0) || (U_Phi <= -6.0)) {

After : if ((U_Phi >= 6.0) && (U_Phi <= -6.0)) {

c To reinspect the generated code, open the Simulink Code Inspector
dialog box if it is not already open, and click Inspect code.

d View the inspection reports.

The summary report displays a failure for the top model.

1-21

1 Getting Started

The verification report for the top model contains several indications
of a failed comparison between the Logical Operator block and the
corresponding code. The top of the report shows the following.

1-22

Quick-Start Example

1-23

1 Getting Started

Further down in the report, underCode InspectionDetails > Model-to
Code Verification, the mismatch between block and code is flagged.

Additionally, under Traceability Details > Model-to Code
Traceability, the mismatch between block and code is flagged.

7 Optionally, try modifying the model or other aspects of the generated code
to see how code inspection results are affected.

1-24

2

Model Compatibility
Checking

• “About Model Compatibility Checking” on page 2-2

• “Checking Model Compatibility from the Model Window” on page 2-5

• “Checking Model Compatibility Using the Command-Line Interface” on
page 2-9

• “Correcting or Working Around Unsupported Blocks” on page 2-10

• “Correcting or Working Around Global Data Store Usage” on page 2-11

2 Model Compatibility Checking

About Model Compatibility Checking
When developing a model from which you intend to generate code that
will be verified using Simulink Code Inspector, you can incrementally and
iteratively check the model for compatibility with Code Inspector rules.
Model compatibility checking can significantly reduce the amount of time
needed to achieve successful code inspection results by exposing issues early
in the model development process. The compatibility checks also promote
model, block, and coder usage patterns that tend to align with the needs of
high-integrity applications, such as maintaining a high degree of traceability.

During a model compatibility check, software checks for model and block
configuration settings that help produce an in-memory representation of
the model that is compatible with Code Inspector rules. You can set model
and block configuration parameters many different ways and produce a
compatible in-memory representation. Compatibility checks scan for a subset
of those ways. Although a model can fail a compatibility check, and still pass
inspection, compatibility checks increase inspection success.

The compatibility checks look for conditions that violate Code Inspector
constraints on model configuration parameters, other modelwide attributes,
and block usage. Items affected by Code Inspector constraints include:

• Model parameters for

- Solver use

- Data import/export

- Optimization

- Diagnostics

- Hardware implementation

- Model referencing

- Code generation

• Modelwide attributes

- Unconnected objects

- Function specifications

2-2

About Model Compatibility Checking

- Model arguments

- Unsupported blocks

- Tunable workspace variables

- Sample times

- Global data stores

- Root outport usage

- Bus usage

• Block usage

- Data types and ports

- Block parameters

For detailed description of Code Inspector constraints and the corresponding
model compatibility checks, see “Model Configuration Constraints Reference”,
“Block Constraints Reference”, and “Simulink Code Inspector Checks”.

To initiate compatibility checking for your model, you can do either of the
following:

• From the model window, select Tools > Simulink Code Inspector, and
use the Simulink Code Inspector dialog box to control model compatibility
checking. For more information, see “Checking Model Compatibility from
the Model Window” on page 2-5.

• Use the slci.Configuration interface to programmatically control model
compatibility checking. For more information, see “Checking Model
Compatibility Using the Command-Line Interface” on page 2-9.

Alternatively, you can initiate model compatibility checking by opening the
Model Advisor dialog box and selecting and running the Simulink Code
Inspector checks.

Model compatibility checking generates a detailed HTML report for each
model checked. If you checked all models in a model reference hierarchy, the
software reports summary status at the MATLAB command line and displays
a summary HTML report. The summary results list the number of checks
that passed, failed, displayed a warning, or did not run, and provides links to

2-3

2 Model Compatibility Checking

the detailed HTML report for each model. If you checked only one model, the
detailed model results are displayed directly in a Model Advisor dialog box.

In the detailed results, the result of each check is explained, and if correction
is needed, recommended actions are provided. The available model
compatibility checks are listed in report order and described in the “Simulink
Code Inspector Checks” reference.

2-4

Checking Model Compatibility from the Model Window

Checking Model Compatibility from the Model Window
1 Open a model that you want to check for compatibility with Simulink Code
Inspector. To use a demo model, you can do the following:

a Open the demo model slcidemo_roll_orig using the following
command:

>> slcidemo_roll_orig

b Save a copy of the model to a work folder, renaming it to slcidemo_roll.
Change directory to the work folder.

2 Open the Simulink Code Inspector dialog box and configure model
compatibility checks.

a From the top model window, select Tools > Simulink Code Inspector.

b Examine the parameters that apply to model compatibility checking. If
you are checking a model that references other models, consider whether
to select the option Inspect all referenced models. This option
includes referenced models in model compatibility checking as well as
code inspection. If you select this option, the button Check this model
changes to Check all models.

2-5

2 Model Compatibility Checking

3 To run model compatibility checks, click Check this model or Check all
models. The compatibility checker displays a progress bar.

4 If you opted to check only the top model, results are displayed directly in
the Model Advisor dialog box. You can use the dialog box to explore and
rerun individual checks and save the results.

2-6

Checking Model Compatibility from the Model Window

If you opted to check all models, results are displayed in the command
window and in an HTML summary report window.

• The MATLAB Command Window displays results similar to the
following:

• The HTML summary report window displays results similar to the
following:

2-7

2 Model Compatibility Checking

Note This HTML summary report is linked from the command window
results, and is saved as file summaryReport.html in the current working
folder.

To view the detailed Model Advisor Report for a model listed in the
HTML summary report, go to the Systems Run table, and click the
corresponding link in the Model Advisor Report column.

5 If all checks pass, the model is ready for inspection. If incompatibilities are
reported, correct the issues and recheck the model for compatibility.

2-8

Checking Model Compatibility Using the Command-Line Interface

Checking Model Compatibility Using the Command-Line
Interface

To programmatically control model compatibility checking, use the
slci.Configuration interface. For a complete list of applicable
slci.Configuration methods, see the “Model Compatibility Checking”
category in the function reference documentation.

In the MATLAB Command Window or within a script, you issue a
call to slci.Configuration.checkCompatibility, specifying the
handle to a Simulink Code Inspector configuration object for the model,
previously returned by cfgObj = slci.Configuration(modelName);. The
checkCompatibility function returns objects containing results information.

The following example shows how to programmatically run the compatibility
checker and report results.

fprintf('\nInvoking compatibility checker ...\n');

config = slci.Configuration('slcidemo_roll');
result = config.checkCompatibility('DisplayResults','None');

for i = 1:length(result)
fprintf('\nModel ''%s'' passed %d checks with %d issues.',...

result{i}.system,...
result{i}.numPass, result{i}.numWarn + result{i}.numFail)

end

If all checks pass, the model is ready for inspection. If incompatibilities are
reported, correct the issues and recheck the model for compatibility.

For an example of using the command-line interface to control the complete
code inspection workflow, see the demo slcidemo_intro.

2-9

2 Model Compatibility Checking

Correcting or Working Around Unsupported Blocks
If the compatibility checker identifies one or more unsupported blocks in
your model, possible actions include:

• Replace an unsupported block with a supported block. Supported blocks
are listed in “Supported Blocks — By Category”, and also can be viewed in
the slcilib block library.

• Replace an unsupported block with an equivalent combination of supported
blocks.

• Replace an unsupported block with an S-Function block created using the
Legacy Code Tool.

• If one or more unsupported blocks cannot be removed, use referenced
models to isolate the unsupported block(s), and/or use a partial verification
work flow that omits the unsupported block(s).

2-10

Correcting or Working Around Global Data Store Usage

Correcting or Working Around Global Data Store Usage
If the compatibility checker identifies one or more externally defined signal
objects that are being referenced as global data stores by Data Store Read or
Write blocks in the model, possible actions include:

• If possible, avoid use of externally defined signal objects that are referenced
as global data stores by Data Store Read or Data Store Write blocks. This
usage causes Simulink® software to create hidden Data Store memory
blocks at root level, which is incompatible with code inspection.

• Move the affected Data Store Read or Data Store Write blocks into Model
blocks.

2-11

2 Model Compatibility Checking

2-12

3

Code Inspection

• “About Code Inspection” on page 3-2

• “Inspecting Code from the Model Window” on page 3-4

• “Inspecting Code Using the Command-Line Interface” on page 3-9

3 Code Inspection

About Code Inspection
Code inspection automatically compares generated code with its source
model to satisfy code-review objectives in DO-178B and other high-integrity
standards. The code inspection process builds an in-memory representation
of the model that is independent of the code generation process. The Code
Inspector systematically examines blocks, parameters, and settings in a
model to determine whether they are structurally equivalent to operations,
operators, and data in the generated code, and generates reports that can be
used to support software certification.

The aspects of a Simulink model that are analyzed by code inspection include
the following:

• Model interface

• Block behavior

• Block connectivity and execution order

• Data and file packaging

• Local variables

For more information on what the Code Inspector examines, see “Code
Inspector Capabilities ” on page 1-4.

When developing a model from which you intend to generate code that
will be verified using Simulink Code Inspector, you can incrementally and
iteratively check the model for compatibility with Code Inspector rules. Model
compatibility checking can significantly reduce the amount of time needed
to achieve successful code inspection results by exposing issues early in the
model development process. Before inspecting the code for a model, you should
check that the model passes Simulink Code Inspector compatibility checks.
For more information, see Chapter 2, “Model Compatibility Checking”.

You can generate the model code to be inspected as part of code inspection, or
perform code generation and code inspection as separate steps.

To initiate code inspection for a model that has passed Simulink Code
Inspector compatibility checks, you can do either of the following:

3-2

About Code Inspection

• From the model window, select Tools > Simulink Code Inspector, and
use the Simulink Code Inspector dialog box to control code inspection. For
more information, see “Inspecting Code from the Model Window” on page
3-4.

• Use the slci.Configuration interface to programmatically control code
inspection. For more information, see “Inspecting Code Using the
Command-Line Interface” on page 3-9.

Code inspection generates an HTML code verification report, which
documents code inspection results with the following major sections:

• Code Inspection — Summary and detailed reports on structural equivalence
between model and code elements. Categories include:

- Function Interface Verification

- Model To Code Verification

- Code To Model Verification

- Temporary Variable Usage

• Traceability — Summary and detailed reports on

- Model To Code Traceability

- Code To Model Traceability

For company and organization code reviewers who must certify software
under DO178-B, the Code Inspector significantly reduces the time and cost
associated with verifying code against requirements. Instead of completing
manual line-by-line code reviews with a project checklist, which are time
intensive and error prone, you can run the Code Inspector and review a
detailed inspection report.

3-3

3 Code Inspection

Inspecting Code from the Model Window
1 Open a model for which you want to generate and inspect code using
Simulink Code Inspector. To use a demo model, you can do the following:

a Open the demo model slcidemo_roll_orig using the following
command:

>> slcidemo_roll_orig

b Save a copy of the model to a work folder, renaming it to slcidemo_roll.
Change directory to the work folder.

2 If the model has not previously passed model compatibility checking,
follow the procedure in “Checking Model Compatibility from the Model
Window” on page 2-5. When the model passes all Simulink Code Inspector
compatibility checks, return to this procedure.

3 Generate code for the model. You can generate code implicitly as part
of code inspection (using the Simulink Code Inspector dialog box option
Generate code before code inspection), or perform code generation
and code inspection as separate steps. This example separates the code
generation step from the code inspection step.

a In the top model window, select Simulation > Configuration
Parameters to open the Configuration Parameters dialog box. If you
want to generate an HTML code generation report for later reference
(recommended), go to the Code Generation > Report pane, and select
the option Launch report automatically. (If you try this example
with a model other than slcidemo_roll, it is recommended to select all
options in the Report pane.) Click OK and save the model changes.

b Go to the Code Generation main pane and click Generate code. (If
the Generate code button does not appear for your model, select the
Generate code only option to enable the button.) Progress is displayed
in the MATLAB Command Window.

c Embedded Coder code generation displays results in an HTML report
window.

4 Inspect the generated code.

3-4

Inspecting Code from the Model Window

a Open the Simulink Code Inspector dialog box if it is not already
open, and examine the code inspection parameter settings. The Code
placement parameter is set to Embedded Coder default, which
configures code inspection to use the default Embedded Coder folder
structure created by code generation.

b Optionally, you can change the location to which code inspection writes
the code inspection report, using the dialog box parameter Report
folder. For example, enter the path string ./report and click Apply.

c To inspect the generated code, click Inspect Code. The Code Inspector
displays a progress bar.

d The Code Inspector displays a summary in an HTML report window:

3-5

3 Code Inspection

The summary report links to detailed verification reports for the top
model and each referenced model. For example, here is the topmost
portion of the verification report for the top model, slcidemo_roll:

3-6

Inspecting Code from the Model Window

3-7

3 Code Inspection

The summary report and the detailed verification reports are saved as
HTML files in the Report folder location you specified.

3-8

Inspecting Code Using the Command-Line Interface

Inspecting Code Using the Command-Line Interface
To programmatically control code inspection, use the slci.Configuration
interface. For a complete list of applicable slci.Configuration methods, see
the “Code Inspection” category in the function reference documentation.

In the MATLAB Command Window or within a script, you issue a call to
slci.Configuration.inspect, specifying the handle to a Simulink Code
Inspector configuration object for the model, previously returned by cfgObj =
slci.Configuration(modelName);. The inspect function returns objects
containing results information.

The following example shows how to programmatically run the
Code Inspector and report results. The model is assumed to have
previously passed Simulink Code Inspector compatibility checks (see
slci.Configuration.checkCompatibility).

config = slci.Configuration('slcidemo_roll');
config.setTopModel(true);
config.setReportFolder(fullfile('.','report'));
result = config.inspect('DisplayResults','None');
fprintf('Model %s status: %s\n',result.ModelName, result.Status);

The inspection report is placed at the location specified in the call to
slci.Configuration.SetReportFolder, which is the report subfolder of the
current working folder. To display the generated report, issue the following
command:

web(fullfile('.', 'report','slcidemo_roll_report.html'));

For an example of using the command-line interface to control the complete
code inspection workflow, see the demo slcidemo_intro.

3-9

3 Code Inspection

3-10

4

DO-178B Objectives
Compliance

• “Model-Based Design Workflow in DO-178B” on page 4-2

• “Compatible DO-178B Objectives” on page 4-5

4 DO-178B Objectives Compliance

Model-Based Design Workflow in DO-178B
Applying Model-Based Design to a safety-critical system requires extra
consideration and rigor so that the system adheres to defined safety
standards. DO-178B, Software Considerations in Airborne Systems and
Equipment Certification, is such a standard.

MathWorks® provides a DO Qualification Kit product that supports you
in qualifying MathWorks verification tools for projects based on the
DO-178B standard. The kit also provides detailed information on how
to apply Model-Based Design to DO-178B. For more information, see
http://www.mathworks.com/products/do-178/.

The DO-178B software life cycle consists of objectives that must be met for
each of the life cycle stages. In Appendix A of the DO-178B standard, these
objectives are summarized in tables. The DO Qualification Kit document
Model-Based Design Workflow for DO-178B summarizes those tables and
provides recommendations on meeting the objectives using a Model-Based
Design process.

The following diagram shows a Model-Based Design workflow that addresses
the development and verification activities in a software life cycle, as
described by the DO-178B standard.

4-2

http://www.mathworks.com/products/do-178/

Model-Based Design Workflow in DO-178B

Requirements Model Source code Object code

CompilingCodingModeling

Development artifact

Software development activity

Verification, validation, or tracing activity

Requirements
validation

Model
conformance

Code
conformance

Model traceability Code traceability

Code
verification

High-level
verification

Low-level
verification

Model
verification

The following table summarizes how Simulink Code Inspector and other
MathWorks products and capabilities can be used in each step of the workflow.

Workflow Step Available Products and Capabilities for Model-Based Design

Requirements
validation

Manual review

Modeling Simulink, Stateflow®

Model traceability Simulink® Verification and Validation™ — Requirements Management
Interface (RMI), Simulink® Report Generator™ — System Design
Description report*

4-3

4 DO-178B Objectives Compliance

Workflow Step Available Products and Capabilities for Model-Based Design

Model conformance Simulink — Model Advisor checks, Simulink® Coder™ — Model Advisor
checks, Simulink Verification and Validation — Model Advisor checks,
Simulink Verification and Validation — DO-178B checks*, Simulink
Report Generator — System Design Description report*

Model verification SystemTest™ — Limit Check element*, Simulink® Design Verifier™
— Property Proving, Simulink Verification and Validation — Model
Coverage*, Simulink Report Generator — System Design Description
report*

Coding Embedded Coder

Code traceability Simulink Code Inspector

Code conformance Polyspace® Products for C/C++*

Code verification Simulink Code Inspector

Compiling Embedded Coder — IDE Link

Low-level verification SystemTest — Limit Check element*, Simulink Design Verifier —
Test Generation, Embedded Coder — IDE Link, Polyspace Products
for C/C++*

High-level verification SystemTest — Limit Check element*, Embedded Coder — IDE Link,
Polyspace Products for C/C++*

*The DO Qualification Kit product may be used to support DO-178B tool qualification.

4-4

Compatible DO-178B Objectives

Compatible DO-178B Objectives
The following table summarizes anticipated certification credits for Simulink
Code Inspector, when used with other code verification products.

Annex
A
Table

Objectives DO-178B
Reference

Software
Levels

Anticipated Certification Credit

A-5 (1) Source code
complies with low-level
requirements

Section
6.3.4a

A, B, C Full — Simulink Code Inspector

A-5 (2) Source code complies
with software architecture

Section
6.3.4b

A, B, C Full — Simulink Code Inspector

A-5 (3) Source code is verifiable Section
6.3.4c

A, B Full — Simulink Code Inspector,
Polyspace dead code analysis

A-5 (4) Source code conforms to
standards

Section
6.3.4d

A, B, C Full — Polyspace MISRA-AC
ACG rules checker

A-5 (5) Source code is traceable
to low-level requirements

Section
6.3.4e

A, B, C Full — Simulink Code Inspector

A-5 (6) Source code is accurate
and consistent

Section
6.3.4f

A, B, C Full for source code based criteria
— Simulink Code Inspector,
Polyspace verifier

4-5

	toc
	Getting Started
	Why Use This Product?
	Code Inspector Capabilities
	About Code Inspector Capabilities
	Model Interface
	Block Behavior
	Block Connectivity and Execution Order
	Data and File Packaging
	Local Variables

	Typical Workflows
	Workflow Summary
	Model Development Workflows
	New Model Development Workflow
	Model Enhancement and Maintenance Workflow

	Inspection Workflow

	Quick-Start Example

	Model Compatibility Checking
	About Model Compatibility Checking
	Checking Model Compatibility from the Model Window
	Checking Model Compatibility Using the Command-Line Interface
	Correcting or Working Around Unsupported Blocks
	Correcting or Working Around Global Data Store Usage

	Code Inspection
	About Code Inspection
	Inspecting Code from the Model Window
	Inspecting Code Using the Command-Line Interface

	DO-178B Objectives Compliance
	Model-Based Design Workflow in DO-178B
	Compatible DO-178B Objectives

